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ABSTRACT

In order to expand the predictive capahility of single-

poim turbulence closure models to account for tile

early-stage transition regime, a methodology for ttle
formulation and calibration of model equations fl)r the

ensemt)le-averaged disturbance kinetic energy and en-

ergy dissipation rate is presented. The calibration is
1)ased on homogeneous shear flow where disturbances

can be described by rapid distortion theory (RI)T). The

relationship between RDrF and linear stability theory

is exploited in order to obtain a closed set. of nlod-
eled equations. The linear disturbance equations are

soh, ed directly so that the numerical simulation yiehts
a database front which the closure coefficients in the

ensemt)le-averaged disturhance equations can be deler-
mined.

INTRODUCTION

I)emands on the range of applicability of turbulence

modeling are increasing, and with these increasing de-
mands has come the need to develop models which are

hetter sensitized t.o the transition process within the

context oft.he traditional Reynolds-averaged turbulence

modeling. Thus, a conunon mathematical framework

linking the laminar regime, with its linear disturbances.

and the fldly turbulen! regime, with its stochas¢ic fluc-

tuations, needs to be provided.

As a first step toward the development of such a
mathematical framework, Thacker, (;atski and Grosch

(1999} studied the behavior of homogeneous, isotropic

decaying disturbances, In turbulence modeling, this
flow is used to calibrate the destruction-of-dissipation

term in the modeled transport equation for the turbu-

lent dissipation rate. In the linear disturbance case,
the same functional form of the turbulence model was

folnld })tit, a flew value of the model coefficient for the

destruction-of-dissipation term was required.
For consistency, disturbances are defined as devia-

tions fiom the ensemble-mean in all flow regimes. The

laminar regime is defined as the region of the flow in
wlfich the ensemble-mean velocity is a stationary solu-

tion of the Navier-Stokes equation. The disturbances

in this regime are small enough in amplitude that their

noiflinear interactions can be neglected, and their evo-

lution is completely predictable from their initial state.

Traditionally, in laminar stability theory, disturbance

fields are studied through the linear Orr-Sommerfeld

equation, wlfich describes the evolution of individual
infinitesimal disturbance modes. Even when a quan-

tity, such as the disturbance energy, is studied, it, is t,he
evolution of the inst, antaneous quantity rather than an

enseInble average that is investigated. In contrast, the

turbulent regime is defined as the region where Ihe flow

is subject to stochastic fluctuations, arising front non-
linear interactions, which render the behavior of the dis-

turbances unpredictable. In this case, the disturbance

field is traditionally studied through (modeled) u-ans-

port equations which describe the evolution of mean
turbulent correlations.

In this work, a set of {ensemble) mean disturbance

transport equations, capable of describing the behavior
of the linear disturbance fields, is developed. The ap-

proach is founded on the observation that, even in the
laminar regime, every flow is subject to an inevitable

uncertainty in initial conditions. Therefore. although

each individual disturbance evolves determmistically, a

i)rol)ahility distribution describing the initial (t = O)
energy distribution of the modes must be introduced

for the calculation of ensemble-mean i)roperties. This

approach is similar to rapid distortion theory (RDT)
in that it is based on linearized disturbance equations:

however, the realm of application is different. RDT

traditionally considers flows at higher Reynohls num-



bersinwhichtheturbulenceisfullydevelopedandthe
effectsofthemolecnlarviscositycanbeneglected,us-
inglinearizedequationsto studythebehaviorof the
disturbancesunderrapid(strong)distortion.Theap-
proachtakenhere,ontheotherhand,considerslinear
disturbancesill theearlystagesoftransitionwherevis-
couseffectsmus!betakenintoaccount.In addition,
RDTis usuallyapplied to short time evolution since
in the turbulence case the nonlinear interactions cause

suflicient growth of the fluctuations to render the linear

approximation invalid after a few eddy turnover times.
In this linearized disturbance case, no such limitation

on the time duration is encountered because viscous ef-

fects result in the decay of the disturbance field at large
times after a relatively small (initial) energetic growth.

More recent extensions of RDT by Salhi, Cambon

and Speziale (1997) have also exploited the connection

with linear stability theory. They studied quadratic
flows in a rotating frame to gain better insight into the

dynamics so that a generalized stability criterion ap-
plicable to turbulent flows could be developed. They

also considered the effect, on single-point closure mod-

eling - specifically the deficiencies in predicting elliptic
flows. While the mathematical framework is similar in

this study, the region of interest here is the early-stage

transition regime. Nevertheless, this commonality fur-

ther substantiates the basic assumption that a mathe-

matical framework can be developed which will provide

a set of transport equations capable of describing the

flow tin a mean statistical sense) in the early-stage tran-

, sition regime.

tn this study, the earlier analysis of Thacker et al.

(1999) is applied to the case of mean homogeneous
shear. Homogeneous shear flow is commonly used as
a calibration flow for turbulence models because both

turbulent transport and viscous terms can be removed

from the transport equations for the turbulent correla-

tions. The purpose of this study is to use the solution

of the disturbance evolution equations for mean homo-

geneous shear flow as a database in the calibration of

the evolution equations for the ensemble-averaged dis-

turbance correlations. As a first step, the focus is on a

simple disturbance kinetic energy and disturbance dis-

sipation rate {two-equation) description. In such a two-

equation description of homogeneous shear, the terms
in the kinetic energy equation are exact, and require

no modeling; whereas, in the dissipation rate equation

both the production-of-dissipation and destruction-of-

dissipation terms require modeling. The two closure
coefficients associated with these terms are determined

from the analysis presented here. Utilization of the dis-

turbance evolution results as a reliable database is sup-

ported by the I)NS results of Lee, Kim, and Moin (1990)
who studied homogeneous shear flow at a high-shear

rate. They showed that RDT results compared very

well with the simulation results over the time period ex-

amined. The resuhs herein also show good agreement
with the DNS results of Lee et al. (1990), and are found

to apply at much later times due to the energetic decay

of the disturbance field in the parameter range studied.

Thus, this database will be used to provide insight into
the asymptotic behavior of important dynamic vari-

ables, as well as to provide the necessary information
for the closure model calibration. The resulting closed

disturbance dissipation rate equation can then be used

in the formulation of a transition-sensitized turbulence
model.

_2

where [

LINEAR THEORY AND ENSEMBLE-
AVERAGED CORRELATIONS

In this section, transport equations for the ensemble-

averaged linear disturbance second-moments in homo-

geneous shear flow are constructed. The theoretical de-

velopment presented here parallels that of Townsend
(1970) who described the structure of turbulence in a

fiee shear flow as a product of the finite distortion of

parcels of turt>ulent fluid. In this study, the relation-
ship of RDT with linear stability theory (Speziale et al.

1996, Salhi et al. 1997} is expanded to include an analy-

sis of the transport equations for the ensemble-averaged

disturbance kinetic energy and the disturbance energy
dissipation rate. As in the turbulence case, such model

equations require closure through the specification of

closure constants. In the two-equation Ix'-e fornm-

lation, only the disturbance dissipation rat, e equation
contains modeled terms which have unknown closure

constants. The homogeneous shear flow is used as a

calibration flow for the production-of-dissipation and
destruct, ion-of-dissipation terms,

In terms of dimensional coordinates (_i'1,5"2, i:..,.) in a

fixed frame, the mean velocity is given by /-"1 = S._'_2,

L'.__ = I':3 = 0, where the mean shear S = constant,

and the disturbance velocity and pressure are denoted

by fij and /3, respectively. For the problem of homo-

geneous shear, it is convenient to work (Rogallo 1984)

in a moving frame [._l, J'2,3"3), in which the local mean

velocity is zero aJld the coordinates are given by

= ._l - { S[ )_'_

= .i'_ , (1)

is time. The mean shear ,b" and the viscos-

it3' u determine the time scale T = ,5'-1 , length scale

L = _, velocity scale 1' = v"-v_, and pressure scale
P = l :_ = u.b' for the flow. Tiffs leads to the introduc-

tion of dimensionless variables .rj = i'j/L (fixed frame),
!

_:j = 23/L {moving frame), t = i/T, u_ = fiffU, and
p = 13/P. The linear approximation is based on the

assumption that. the nonlinear terms uj _ in the dis-
Oxj '

turhance momentunl equations, can be neglected with
respect to both the viscous term ljV2th and the mean

shear term u_OU,/Oxs. This approximation remains
valid as long as the amplitude of the disturbance ve-

locity remains small compared with the velocity scale
,/-b-g.

An arbitrary solution of the incompressibility condi-

tion and linearized Navier-Stokes equations in the mov-

ing frame can be written as a linear superposition

u_(x',t) = .fUnk fj(k,t)e 'k×'

f tkxJ
p(x', t) = d3k p(k, t)e , /2)



where the mode amplit udes fj(k, t) and p(k. t) satisfy

kill + k_f2 + k:@: = 0

fm + f2 + iklp = -K'2 fl

L + ik' v =
_, + ik:,p = -K2 f, ,

(3)

t,1)

(5)

%)

with k'2 =- I,:2 - tk_, K 2 = I,:_ + It'22 + I,'_ and the wave

numbers (ki,k2,k_) are constant in tinle. Thesohition

for t|le velocily (listurbance nlodes can be written in

the form

J,(k,t) = 3./,alk. t)f_(k.() f -_lk't) , (71

where the ex])one/l[

/q(k,t) = K 2 (It

= 1L:_ t:; - kl I,'2 t 2 + (t,,l,',)l (8)
3

arises front the viscous damping of all modes. The

transfer matrix M has non-vanishing components

k 2

t,'_k2 (0 - 0o)
MI 2 -

kl k_

2 2kl t(kl -- I,'2k"+ I,'_)
-t k_fl<2

k:>,k2(O0- O)
3,1:>.2-

k,_k_t(k_ - k._t,"+ ki_)
+ ('))

k_tk;2

wilh

k,, =

o0 -- ,a,,-'
1.4>

(10}

The initial mode alnplilttdcs f,{k,O) are elenienls
of an ensemble with mean zero. arid covariance

(f,(k, ())f_ (I, 0)). Assuming i hat the initial disturbance
field is homogeneous, isotropic, and has finite energy

h'0. the initial corm'lance is given by the same expres-

sion as that used by Thacker et al. (1999) [or the case

of zero mean shear with no houndary

(f,(k,0i/j(1.0)) = <f'_(k + 11 (A,j -
k,k_

k 2 )

× IGT'(k), (li)

where

'2 (l • ) __ilk 2

"P(k)= ,_ k-t (12)

is the probability distribution for disturbance second-

moments, and the parameter a, related io the variance

of the distribution, will be given a physical inierpreta-

lion in what follows. This probability distribution is
consisienl with a/4 low wave number behavior for the

energy sl)eci runi 15(/,') and, in the case of linear dis/til'-

bances in zero-nlean-shear flow, leads to a t-_ decay

law for the mean disturbance kinetic energy.
The disiurl)ance mode covariance is related 1o the

etierg, v sl)eclrllnl tensor by

(f,(k, t)f2(1, t)) = E,j (k, t),C(k + l), (l:ll

• so it follows from Eq.(7) that

E,,(k. ti=M.(k,t) Mj,,,(k.t)

x Eot,. ( k )+-2qt k.t) ( 1-t )

where, as a reslllt of ( 1 1),

h'0P(k) (15)
k, k2_

E0,jlkt = E,3(k,0) = d,2 -- k2 ]

is the initial energy spectrum tensor.

The energy spect rtlln tensor is tile fundaniental quail-

tit3, fronl which all disturbance second-moments are de-

rived by integration over wave number space. Of par-
ticular interest are the disturbance stress tensor

/r,2(t ) = d:_k E,s(k,t ) , (16)

the disturbance kinetic energy f((t)= r./2, and the

disiurbance dissipation rate

/s(l) = d"k K 2 E,,(k, 11. 117)

A physical interpretation can be given to the parant-
eter a, wliich appears in the lwobabiliiy distribution

(12), by perfornling the int, egral in (171 at time zero to
obtain so = 51qola. In terms of the dimensional distur-

bance kinetic energy /_" = V,'_'/X', and the dinlensional

dissipation rate _ = pS2e the parameter a is given by

ci =5 (,b'/;'0__') = St/0 (1,"4)
\ e0 /

[t will Iw shown that this quantity, a ratio of the dis-

turbanee time scale to the mean flow time scale, regu-

lates the subsequent growth or decay of linear distur-

bances in homogeneous shear flow. lit the turbulence

case. the variable _! = ,b'_'/g also plays a critical role.

Jongen and Gatski (1998) have shown that flit turbu-
lent homogeneous shear flow, r/reaches an equilibrium

value which can be analytically connected to the vari-

ation of the ratio of kinetic energy production to dissi-

pation rat(..

MODELED DISTURBANCE TRANSPORT

EQUATIONS

The ensemble-mean kinetic energy and dissipation

rate for linear disturbances satisfy evolution equations



whichcanbederivedfromthelinearizedNavier-Stokes
equations(in the fixed frame). In this homogeneous

flow, gradients of all ensemble-mean quantities vanish,

and the (dimensionless) kinetic energy and dissipation
rate equations reduce to

(19)

._= "P_- 'D_, (20)

where 10z;(= -r12) is the kinetic energy production,

_ - i,x\0.1:1 0,I: 2 "JV _', 0_:,

" d'S k [/qk_ + (21)= --2 ' E_i K 2 El2]

is the production-of-dissipation, and

' < 02t'* J,,, \l),. = . Ox_&rk OxjOxk /

= 2j*d_klC4- E, I22)

is the destruction-of-dissipation. From Eqs. (19) and

(20). it is seen that. only the disturbance dissipation rate

equation requires closure models. In the standard Ix"- ¢

formulation, the production-of-dissipation is modeled
by

Pc = --('_l#r12, (23)

which gives

h" /( 10_
C',_ = -i ° . -- , (24)

- E T 12 _ 101<

for the production-of-dissipation coefficient. The de-

struction-of-dissipation is modeled by

¢2

:P_ = 62_, (25)

which yiehls

A"

C',2 = _--P, (26)

for the destruction-of-dissipation coefficient.

Recall that the components E,j of the energy spec-

trum tensor are completely defined by Eqs. (7) through
(15). With the solution of these equations, all the quan-

tities of interest, including 10, and _, can be obtained

by caaTying out the integration in Eqs. (16), (17), (21),

and (22). These three-dimensional integrations were

initially performed numerically using cubic mid spher-

ical grids. It. wa._ found that although the convergence

was good at small times, at times greater than about

10S -1, the results became strongly dependent, on the

grid resolution used (even for grids with as many as
2.50 million points). The numerical evaluation of the

integrals in Eqs. (16), (17), (21), and (22) is there-

fore greatly simplified, mid the accuracy significantly

enhanced, I)y performing the radial integration analyt-
ically.

For the chosen probability distribution (12) the radial

integrals in Eqs. (16), (17). (21), and (22) are Gaussian

and can easily be carried out analytically. (?onvergence

tests show that the resuhing angullar integrals had to

be evaluated on grids with a spacing of 1/16 of a degree.

In the next section the results of these computatioils

are used to analyze the ensemble-averaged transport

equations for the disturbance kinetic energy and dis-

sipation rate. Of particular interest, is the dissipation
rate equation Eq. (20) which requires closure. It will

be shown that closure models for P_ and "D_, with con-

stant closure coefficients, can be determined through an
analysis of the long-time behavior of the disturbance
correlations.

RESULTS

Figure 1 shows the evolution of the disturbance ki-

netic energy for different initial values of t/0. For a

small value of r/0 (= 0.6), the energy decays monoton-

ically in time. A transition between this monotonic

decay and substantial growth of the disturbance energy

occurs for values of t/0 between 1.2, where the energy
reaches a minimum and grows briefly, and 2.4, where

the energy grows to a magnitude just equal to its initial

value before decreasing. The temporal evolution shown

in Fig. 1 for the moderate shear case qo = 6, which

corresponds to the equilibrium value for q in turbulent.

homogeneous shear flow, contrasts with the exponen-
t.tat energetic growth (Tavoularis 1985) characteristic of

the turlmlent case. Here the disturbance kinetic energy
grows to a little beyond three times its initial value.

Therefore, if the initial disturbance kinetic energy is

considerably less than the natural energy scale uS, the
linear approximation should remain valid for all times.

Calculations have also been carried out for r/0 = 12 and

18. The evolution of h" with time for these other t?0 val-

ues (not shown) is very similar to that for tt0 = 6. The

only difference is that, as expected, the maximum value

of Ix" reached before the final decay is larger than for

r/o = 6; for t/o _ 12, 1_',_.,. = 6.95K0, and for q0 = 18,

/x"...... = 10.821¢0. The initial value of tl0 = 18 is a high-
shear case which is very close to the value used in the

DNS study of Lee et al. (1990) (rl0 _ 17). Using the

numerical sinmlation results, Lee et at. also compared

with RI)T and found very good agreement over the time

interval examined (0 < t < 12). The high-shear linfit-

ing value 00 --+ ,vc corresponds to the case traditionally
considered in RDT calculations (Rogers 1991}, where

viscosity is neglected. The absence of viscosity allows

the energy to grow monotonically, rendering at some

finite time the linear approximation invalid.
Figure 2 shows qualitatively similar trends for the

disturbance dissipation rate e(t) at the corresponding
values of *10 = 0.6 and 6.0. For the small initial value

00 = 0.6, the dissipation rate also decays monotoni-

call),. At. the moderate shear rate value _/0 = 6, e(t}

grows after a brief initial period of decay, reaches a

peak and then decays at a more rapid rate than the

disturbance kinetic energy. Similar behavior was tound
for the higher shear cases of qo = 12 and 18.

Since the maiu focus here is on disturbances wtfich



can eventually grow (aud lead to t urhulence), the re-

suhs for the initial value of Ti0 = 0.6 are not of' interest.

In addition, while this weak shear case yields decaying

dislurl)ances, the validity of neglecting lhc noi,linear

terms does come inlo question. As (7antl)on and Scolt

(1999) have pointed out, the contribution of the non-

linear lerltl, while small, may have a cmnulative effecl

on the dynamics over aperiod of lime. Ill addition, the

linearized, weak shear case nlay he inconsistent because

the pro(hlcl t.ernl containing Ill(: weak mean shear is re-

tained while the nonlinear leruls, possibly of the same

inagnitude, are onlilted. These conshlerations dictate

that subsequent resuhs will focus on the moderate- and

high-shear cases.

t:ig. 3 shows the mapping of the anisotropy invariants

ii(= -b,sb, j/2) and III{= b,kb_qbu/3), where bu(l } ----

r,j(t)/(2l((t)) - a,j/3 are the stress anisotropies. Re-

call that initially, an isot.ropic distrilmtion o[' the dis-

turbmlce energy is assunled. Tile figure shows that af-

teE I m 2, the (realizahle) disturbance fiehl migrates

toward the tv¢o-comlmnent (2(_) stale. After t _ 10

the disturbmlce field is 2(' and monotonically evolves

towards a one-comlmnent (1(!) slat{,. Thns, the struc-

ture of tile disturl)ance tield is significantly altered bv

the impositiolr of the mean shem. Also shown in Fi R,

3 is the invariant nlap trajectory of the [)IN.'-; results of

Lee el al. (1990). As call be seen. at early thnes (l <

2) hoth the DNS traje('lory and that from tile presenl

calculations, with 00 = 6 and 1P,, are in l)hase, and at

later times, even though tile DNS evolution lags behind

tim Ihe current results, all of these evolve Ioward the

same 1(' state. V'¢hile the resuhs shown in Fi X. 3 are

for the 7/0 = 6 and 1_ cases, the same trend towaM a 1('

linlit was fotmd to hold for the case of 710 = 0.6. These

disturbance field results are in sharp contrast to the

equilibrium state reached for the turbulent case where

the fixed point invariant values m'e III,, ,_ 0.0043 and

I I:,: m 0.064.

Of particular importance for turhulence nlodeling are

tile, closure coefficients (-'.-r and ('¢2. Figure 4 shows

the evohltion of these disturbance dissipation rate coef-

ticients. Results tor three initial values of O0 are shown

which suggesl that a limiting range of values at large

times (aud large */0) can be reached. For (L_I there is

a lllodest change in the value at t = 50 with chang, es

in _10: foE" H0 = 6, (-!el = 2.23. for _/0 = 12, (-':] = 2.08.

and for _10 = 1_, ('_r = 2.01. For C_.2, the values range

about :k3(_ from a nlean of 2.46. Although it was not

possible to determine analytically the limiting vahles

for ('_1 and ('_2, nuinerieal simnlations for large values

of _10 al large tinles showed that the limiting values were

('_.r _ 2.0 aim (_,.2 ,'_ 2.5. These values are in contrast

to tile usual values ohtained for turbulent closure mod-

els where ('_-1 _ 1.45 and ('_2 lies in the range of 1._3

to l .`¢)2.

In the turbulent case, the destruction-of-dissipation

coefficient was deduced front all analysis of the decay

of isot ropie turbulence (e.g. (:omte-Bellot and (:on'sin

1<)71 ). ha the analysis of tile decay of homogeneous.

isotropic linear disturbances, Thacker et al. (1999) de-

ternfined a value for ('_.2 of 1.4 in a boundary-free case.

This is in sharp contrast to tile value of 2.5 found in

lhis homogeneous shear flow. An explanation for this

difference may lie in lhe slructure of the dislurt)ance

held. In the lwevious decay studies, the disturhance

field was isotropic, and renlained isotrol>ic in tire ab-

sence of mean shear, l towever, as the resulls shown here

indicate, Ill(' iml>osition of ineaEl shear quickly produces

an anisotrol)ic tMd (see Fig. 3)which eventually drives

the flow close t.o a 1C state (Fig. 3). Thus, a more

relevant flow wilh which to form a comparisoEl may I>e

the decay of anisotropic turbulence. Dakos and (;ihson

(19,¢)0) studied such a flow and deduced from the deca.v

of the turlmlenee lhe destruction-of-dissipation rate co-

efficient ('_2. Their anisotropic decay data yielded a

value foE" C_2 of 2.IS which is relatively close io the

value of 2.5 found here for (-'--2. Of course, in spite

of fundanmntal differences in the dynamics associated

with each study, it is interesting to note thai the intro-

duction of anisotropy in either disturbance tield {linear

or turbulelfl ) signiticanlly increases tilt' value of tile co-

efficient C_2.

CONCLUSIONS

(_losm'e models foE" the i)roduction-of-dissil)ation rate

and destruclion-of-dissil)ation rate in a linearized dis-

turban<'{ transport equation for the dissil>ation rate

have been developed. The stud,,' leas exten(led the ap-

proach of Thacker et al. (1999) to mean homogeneous

shear flow in which deterministic solutions of lhe lin-

earized Navier-Stokes equation are combined with a

1)robal)ility <listribution that accounts for the uncer-

tainty in inilial conditions, to obtain mean transport

equations fl)r disturbance correlations m the laminar

regime.

The temporal evohltion of the disturl)ance kin(qic en-

ergy and the disturbance dissipation rate were shown

to del)end on tile nlagnitude of the initial value of tilt'

time scale ratio 71. The temporal evoh,tion for I)ot h the

kinetic energy and dissipation rate was nlonotonically

decaying for values of _/0 < 1.2. For larger values of

_lo, both quantities initially decayed, then grew with

time, and then subsequently decayed at large times.

This is in contrast to the turbulent, homogeneous shear

case where the quantities displayed exl)onential growth.

Nevertheless. it was possible to find al)proximate val-

ties for the dissipation rate coefficients ('¢1 _ 2.0 and

('*.2 _ 2.5, which were considerabl,v larger than Ihe <'or-

responding t.urhnlent values.
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Figure 1. Temporal evolution of disturbance kinetic
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